REGULAR COURSE SYLLABUS

School of: Professional Studies
Department: Engineering Technology

Prefix & Course Number: EET 3430 Crosslisted With*: ____

Course Title: Power Generation Using Renewable Energies

Check All That Apply: Required for Major: ____ Required for Minor: ____ Specified Elective: X
Required for Concentration: X Elective: X Service Course: ____

Credit Hours: 3 (3+0)

Total Contact Hours per semester (assuming 15-16 week semester):
Lecture 45 Lab 0 Internship _____ Practicum _____ Other (please specify type and hours): _____

Schedule Type(s): L Grading Mode(s): L

Variable Topics Courses (list restrictions, including the maximum number of hours that can be earned**):

** NOTE: This information must be included in the course description.

Restrictions (Variable Topics Course): ____

Prerequisite(s): (EET 2145 or EET 3010) and MTH 2410 with a grade of “C” or better
Corequisite(s): ____

Prerequisite(s) or Corequisite(s): ____

Banner Enforced:
Prerequisite(s): (EET 2145 or EET 3010) and MTH 2410 with grades of “C” or better
Corequisite(s): ____
Prerequisite(s) or Corequisite(s): ____

Catalog Course Description:
This is an introductory course in electrical power generation that examines various types of renewable energy sources. While examining many developing technologies, the course concentrates on the design and application of photovoltaic and wind electrical generation. It examines conventional synchronous and induction machines, as well as modern doubly-fed induction machines and their application in wind generation. It also provides an introduction to inverter technology and methods of interfacing renewable energy power plants with the electrical power grid.

APPROVED:

[Signature]
Date 3/1/2011

Department Chair OR Program Director

[Signature]
Date 3/11/11

Dean OR Associate Dean

[Signature]
Date 6/12/11

Associate VP, Academic Affairs

[Signature]
Date

*If crosslisted, attach completed Course Crosslisting Agreement Form
Required Reading and Other Materials will be equivalent to:

Specific, Measurable Student Behavioral Learning Objectives:
Upon completion of this course the student should be able to:
1. Analyze the problems, advantages and disadvantages inherent in the most common types of renewable energy-fueled power systems concentrating on photovoltaic and wind generation.
2. Solve engineering problems concerning the locating and design of wind and solar-fueled power plants.
3. Define the basic design requirements for wind, solar, and other types of renewable-fueled power plants.
4. Provide a basic description of the power electronics interface with the power grid.
5. Describe the operation of induction, synchronous, double-fed induction, and other common types of wind generators and their interface with the power grid.
6. Outline the basic requirements for interfacing solar-fueled power plants with the power grid.
7. Define the basic elements of fuel cells and the implications of the hydrogen economy.

Detailed Outline of Course Content (Major Topics and Subtopics) or Outline of Field Experience/Internship (experience, responsibilities and supervision):

I. Overview of Major Renewable Energy Types
 A. Wind
 B. Photovoltaic
 C. Solar Thermal
 D. Geothermal
 E. Fuel Cells
 F. Tidal and Wave

II. Review of Electrical Mechanical Devices

III. Wind Generation
 A. Industry Overview
 B. Wind Speed and Energy
 1. Air Density
 2. Rotor Swept Area and Power Input
 3. Wind Speed Prediction
 C. Wind Power Systems
 1. System Components
 2. Turbine Spacing
 3. Control Requirements
 4. Environmental Aspects
 D. Offshore Wind Farms

IV. Photovoltaic
 A. PV Technologies
 B. Solar Energy Maps
 C. PV Cell
 D. I-V and P-V Curves
 E. Array Design
 1. Sun Intensity
 2. Sun Angle
 3. Shadow Effect
 4. Electrical Load Matching
 F. Energy Storage and Stand-Alone Systems
 1. Battery Systems Design
 2. Battery Safety And Management
 G. Grid Interconnected Systems

V. Power Electronics And Inverters
 A. Grid Interconnected Inverters
 B. Stand-Alone Inverters

VI. Geothermal Systems
 A. Geothermal Potential
 B. Turbine Energy Cycle
 C. Environmental Impacts

Evaluation of Student Performance:
1. Written Assignments
2. Exams
3. Projects or Papers