REGULAR COURSE SYLLABUS

School of: Professional Studies

Department: Engineering Technology

Prefix & Course Number: EET 3410 Crosslisted With*: _____

Course Title: Electric Machines

Check All That Apply: Required for Major: X Required for Minor: _____ Specified Elective: Required for Concentration: ___ Elective: ___ Service Course: _____

Credit Hours: 3 (2+2)

Total Contact Hours per semester (assuming 15-16 week semester):

Lecture 30 Lab 30 Internship _____ Practicum _____ Other (please specify type and hours): _____

Schedule Type(s): B Grading Mode(s): L

Variable Topics Courses (list restrictions, including the maximum number of hours that can be earned**):

** NOTE: This information must be included in the course description.

Restrictions (Variable Topics Course): _____

Prerequisite(s): (EET 2145 or EET 3010) and MTH 2410, with grades of “C” or better

Corequisite(s): _____

Prerequisite(s) or Corequisite(s): _____

Banner Enforced:

Prerequisite(s): (EET 2145 or EET 3010) and MTH 2410, with grades of “C” or better.

Corequisite(s): _____

Prerequisite(s) or Corequisite(s): _____

Catalog Course Description:

This course studies motors and generators and their applications. Topics include: magnetism and magnetic circuits, voltage and torque generation, DC motors, DC generators, single and three phase transformers, and synchronous alternators.

APPROVED: Richard Rosso

Department Chair OR Program Director Date 3/1/2011

Dean OR Associate Dean Date 3/1/11

Associate VP, Academic Affairs Date 6/23/11

*If crosslisted, attach completed Course Crosslisting Agreement Form
Required Reading and Other Materials will be equivalent to:

Specific, Measurable Student Behavioral Learning Objectives:
Upon completion of this course the student should be able to:
1. Analyze and use the following equipment: basic motor and generator systems, induction motors, three-phase transformers and motors and synchronous motors
2. Describe DC and 3-phase electric motor constructions
3. Compare and contrast a variety of DC and AC motors
4. Describe the theory and operation of electric motors
5. Formulate motor specifications for a variety of applications

Detailed Outline of Course Content (Major Topics and Subtopics) or Outline of Field Experience/Internship (experience, responsibilities and supervision):
I. Magnetism and Magnetic Circuits:
 A. Basic Units
 1. Flux
 2. MMF
 3. Reluctance
 4. Nonlinear Effects of Ferromagnetic Material
 B. Magnetic Circuits

II. Principles of Voltage & Torque Generation:
 A. Voltage Induced in Conductor
 B. Voltage Induced by Coil
 C. Lenz's Law
 D. Force Produced by Conductor
 1. Biot-Savart Law
 2. Direction of Force
 E. Torque Produced by Conductor
 F. Back EMF

III. D.C. Generator Characteristics:
 A. Basic Generator Equation
 B. Equivalent Circuit
 C. Separately Excited
 D. Voltage Regulation
 E. Losses and Efficiency
 F. Shunt
 G. Series
 H. Compound
 I. Parallel Operation

IV. D.C. Motor:
 A. Basic Motor Equation
 B. Back EMF
 C. Equivalent Circuit
 D. Speed Regulation

E. Losses & Efficiency
F. Shunt
G. Series
H. Compound
I. PM
J. Starting D.C. Motors
K. Stopping D.C. Motors

V. Transformers:
 A. Single-Phase A.C. Circuits (review)
 B. Basic Transformer Theory
 C. Practical Single Phase Transformers
 D. Three-Phase A.C. Circuits
 E. Three-Phase Transformers

VI. Synchronous Alternator:
 A. Construction
 B. Frequency Relationships
 C. Generated Voltage
 D. Three-Phase Alternator
 E. Ratings & Connectors
 F. Equivalent Circuits
 G. Voltage Regulation
 H. Losses & Efficiency
 I. Typical Characteristics

VII. Three-Phase Synchronous Motor:
 A. Construction
 B. Theory of Operation
 C. Starting Techniques
 D. Power, Efficiency & Torque
 E. Typical Characteristics
 F. Power Factor Correction
VIII. Three-Phase Induction Motor:
 A. Construction
 B. Rotating Field Concept
 C. Theory of Operation
 D. Speed Relationships
 E. Analysis of Rotor Behavior
 F. Losses & Efficiency
 G. Typical Characteristics

H. Starting Techniques

IX. Induction Generator:
 A. Theory of Operation
 B. Losses & Efficiency
 C. Typical Characteristics
 D. Applications

Evaluation of Student Performance:
1. Written exams
2. Written lab reports